

Developers Guide for Installing and Building Cubit
Windows 2000 / Visual .NET
Version 0.9.4

This guide has been developed to help Cubit developers correctly set up and
build the Cubit executable, including the Claro GUI (Claro) . We assume that
serious Cubit developers will need to work with both GUI and command line
versions of Cubit.

This guide assumes that you already have the operating system (Windows 2000
or XP) installed on your machine. You may also have some of the software
described here already installed on your system. If so, read through the
applicable section to verify that the installed software is a correct, recent version,
and that any settings and directory structures described are set up correctly.

There are several places in the instructions where you will see the comment
NOTE in bold letters. Please pay attention to this information as it may save you
much time and trouble in your installation.

Assumptions

The document assumes that the user has sufficient skill with the Windows
operating system to perform the following tasks:

1. Set system variables. Cubit installation requires setting of system
variables such as CUBITROOT. System variables can be set in Windows
2000 by right-clicking the “my computer” icon, and selecting properties
from the popup menu. On the system properties panel, select the
Advanced tab, and then push the “Environment Variables” button in the
middle of the panel. In the “Environment Variables” panel, use the bottom
half titled “System Variables”. Use the New, Edit, and Delete buttons as
appropriate to set the correct system variables. REMEMBER:
Applications will need to be closed and restarted to reflect the
changes made to system variables.

2. Download and install software from the internet or from CD. All required
software is listed below.

Prerequisites
Before downloading and building Cubit, you will need two accounts and several
software tools.

Malla Account
In order to download the software, you will need an account on malla.sandia.gov
which contains the cubit repository. Contact Bob Kerr (rakerr@sandia.gov) to get
an account and password.

Developer Password to Cubit website

In order to obtain access to developer only tools, libraries, etc., you will need to
obtain a password to the developer area of the cubit website
(http://cubit.sandia.gov/training). Contact Bob Kerr (rakerr@sandia.gov) to get an
account and password to this developer site.

Software

Install the following software, if the correct version is not already loaded on your
machine:

 WinZip compression/decompression utility version 8.0 or later. A
demo version may be downloaded from www.winzip.org .

 CCVSSH is a secure shell program that allows secure connection to

Sandia computers such as cubit.sandia.gov. CCVSSH can be
obtained from the cubit developers website
(http://cubit.sandia.gov/release/developers_tools/WINDOWS).
Dowload file ccvssh_install.exe. You will need your developer area
password to access this area.

 WinCVS version 1.20 (NOTE: the latest version 1.30 is not compatible

with CCVSSH, so make sure and get version 1.20 for now. WinCVS
may be downloaded from www.wincvs.org.

 CMAKE is an open source, cross-platform build system used to build

Cubit. CMAKE can be downloaded from www.cmake.org. Install
version 2.0.5 or later.

 C++ compiler. You will need to obtain and download Visual C++ .NET

for compiling the source code. Ask your supervisor how to obtain a
copy of this program, and install using the default setup. NOTE: Use
care if the older Visual C++ 6.0 is installed on the same machine.
Depending on the PATH variable, one or both could get incorrect run-
time libraries and work incorrectly.

mailto:rakerr@sandia.gov"
mailto:rakerr@sandia.gov"
http://www.winzip.org
http://cubit.sandia.gov/release/developers_tools/WINDOWS
http://www.wincvs.org
http://www.cmake.org

Where to Put the Code
You will be downloading two main code groups. The first is the cubit source
code. You will select a directory for this, and the code will be created in a sub-
folder called cubit under your folder. For example, if you choose a project
directory called c:\cubit_project, the cubit source tree will begin at
c:\cubit_project\cubit. In the remainder of the document, we will be referring to
this location as CUBIT_ROOT. When path or file information is called for, simply
substitute in the directory (e.g., c:\cubit_project\cubit) for the CUBIT_ROOT
portion of the path.

The second code group downloaded for windows are the cubit libraries and third
party files. Again, select a top level directory, and the code will be put into a
directory called windows_libs_net under this directory. Thus, if you choose
c:\cubit_project as the top level, CVS will create a directory
c:\cubit_project\windows_libs_net to put the code in. In the remainder of the
document, we will be referring to this location as CUBIT_LIB. When path or file
information is called for, simply substitute in the directory (e.g.,
c:\cubit_project\windows_libs_net) for the CUBIT_LIB portion of the path.

Downloading Cubit Source

If you are lucky, you will now be able to start downloading Cubit source code,
provided you are careful in setting up CVS correctly.

 Define system variable CVSROOT. The value should be
:ext:user@malla.sandia.gov:/usr/local/eng_sci/CVS where the user is
the user name supplied for you malla account.

 Run the CVSSSH login program once. From your desktop, select start-

>programs->CCVSSH->ccvssh login. When prompted, enter your Malla
password.

 Setup WinCVS. Run WinCVS, either from the icon on your desktop, or by

selecting start->programs->WinCVS->WinCVS. In the WinCVS GUI,
select admin->preferences. In the preferences dialog, under the General
tab, enter the CVSROOT value exactly as you did above for the system
variable. In the Authentication pulldown, select SSH server. Click the
Globals tab. Check the box labeled “Use TCP/IP compression”, and put a
9 in the text box. Click the Ports tab. At the bottom, check the box labeled
“Check for an alternate rsh name:” and in the text field, enter the full path
to the CCVSSH executable (for the default installation, this is “c:\Program
Files\CCVSSH\ccvssh.exe” without the quotes). Click okay. If all has
gone well, you can now begin downloading the Cubit source code.

 Checkout the cubit code using WinCVS. In the WinCvs GUI, select

create->checkout module. In the checkout settings dialog under “Enter
the module name and path on the server:” type cubit (caps are significant).
Under “Local folder to checkout to:”, enter the name of the directory you
wish to have your cubit source under. CVS will create a folder called cubit
under the folder you select in this step. You may put the code anywhere.
Click okay to begin the download. This will take some time to complete.
Below, you may wish to write the value of CUBIT_ROOT to be used later
(for example, c:\cubit_project\cubit):

CUBIT_ROOT = _______________________________________

 Checkout the windows library code using WinCVS. In the WinCvs

GUI, select create->checkout module. In the checkout settings dialog
under “Enter the module name and path on the server:” type
windows_libs_net (caps are significant). Under “Local folder to checkout
to:”, enter the name of the directory you wish to have your cubit libraries
under. CVS will create a folder called windows_libs_net under the folder
you select in this step. You may put the code anywhere; we recommend
putting it in the same folder as the cubit code checked out above. In our
examples we will use the local folder name c:\cubit_project. Click okay to
begin the download. This will take some time to complete. Below, you
may wish to write the value of CUBIT_LIB to be used later (for example,
c:\cubit_project\windows_libs_net):

CUBIT_LIB = _______________________________________

 Define the correct path to the latest current cubit directories and

libraries. To make this simple and less prone to error, a vbscript file has
been provided to assist. The script is located in the CUBIT_LIB\bin
directory. Double click on the set_cubit_path.vbs icon to run the program.
This will create a system variable named CUBIT_PATH which contains a
rather long specification of the paths to the various cubit components and
libraries.

 Update the system variable PATH. Edit this variable, and (if it is not

already there) add the text “%CUBIT_PATH%;” at the end of the PATH
variable. This will add all of the needed path information for Windows to
find Cubit libraries and components to run correctly. Note: If you have
previously run cubit using the current machine, you may have old path
information in your PATH variable. Edit the variable to remove references
to cubit-specific code (e.g., paths which refer to verdict, camal, acis,
mesquite, etc). Old paths in your PATH variable may cubit to build and/or
run incorrectly.

 Define the system variable CUBITROOT. Its value should be the full

path to the windows_libs_net directory created in the last step (for
example, c:\cubit_project\windows_libs_net).

Building Cubit

 Setup Visual C++ .NET. Start up Visual C++ .NET. From the menu,

select tools->options. In the left-hand pane, click on Projects->VC++
Directories. Under the “Show directories for:” pulldown, select
executables. Scroll to the bottom of the Directories box, and click on the
empty box outline at the bottom of the list. Enter the path CUBIT_LIB\bin.
Select OK to finish. You may now close Visual C++ .NET if you wish.

Building The Cubit Command Line Version

 Build the .NET solution files. Run CmakeSetup from the icon on your

screen. Under “Where is the source code:”, Enter CUBIT_ROOT. Under
“Where to build the binaries:”, we strongly suggest you enter a different
build directory (e.g., c:\cubit_project\build\cubit). Below, this location is
written as BUILD_DIR. In the Build For: menu, select the compiler (Visual
6 or Visual 7 .NET). Press the configure button. CMakeSetup runs its
configuration step. After the first configure step, there may be variables
which are still unknown. These will be highlighted in red on the left panel
of the CmakeSetup screen. Unless you wish to modify CmakeSetup from
the defaults, you can usually just press configure until all variables default.
When there are no red variables left, press the OK button to write out all
CMakeSetup information. NOTE: if you have the cygwin version of bison
and flex installed on your machine, you will need to modify two variables:
set BISON_EXE variable to point to your cygwin bison.exe (usually some
path of the form c:\your_cygwin_area\cygwin\bin\bison.exe). Similarly, set
the FLEX_EXE variable to point to your cygwin version of flex.exe. Press
configure, then OK.

 Build the Cubit Code. Open Visual C++ .NET. Under the file menu,

select Open->Project. Select the solution file BUILD_DIR\cubit.sln . Select
Build->Build Solution, and wait for the project to fully build. This may take
some time.

 Setup Visual .NET to run the proper executable. In the solution

explorer pane, right-click on the ALL_BUILD project and select

Properties… On the Property Pages pop-up in the left-hand pane, select
Configuration Properties->Debugging. Under the Action->Command
argument, enter BUILD_DIR\debug\cubitx.exe (for debug) or
BUILD_DIR\release\cubitx.exe. Select OK.

 Run Cubit. To run the finished executable, press F5, or select run from

the menu buttons.

 NOTE: if windows cannot run the executable because some .dll or .lib
cannot be found, it is because the PATH variable did not get set correctly.
Try restarting windows, which will fully redefine the PATH variable. If this
does not work, you may need to contact cubit-dev@sandia.gov or your
supervisor to get it defined correctly.

Building Cubit GUI Version

 Build the .NET solution files. Run CMakeSetup. Under “Where is the

source code:”, Enter CUBIT_ROOT. Under “Where to build the binaries:”,
we strongly suggest you enter a different build directory (e.g.,
c:\cubit_project\build\cubit). Below, this location is written as BUILD_DIR.
In the “Build For:” menu, select the compiler (Visual 7 .NET). Find the
BUILD_INTERFACE Cache Value, and turn it ON. Press Configure. Two
more variables may appear in Red on the left side of the Cache Values.
Set COPY_INTERFACE to ON. Set the CUBITI_COPY_DIR value to
CUB IT_LIB /claro/component/cubit. Press Configure. CMakeSetup runs
its configuration step. If the step is fully successful, the OK button will
become active. Press the OK button to write out all CMakeSetup
information. Sometimes, the configuration takes two or more iterations to
fully resolve the build parameters. Keep pressing configure until all red
variables have turned grey, then press OK. NOTE: if you have the cygwin
version of bison and flex installed on your machine, you will need to
modify two variables: set BISON_EXE variable to point to your cygwin
bison.exe (usually some path of the form
c:\your_cygwin_area\cygwin\bin\bison.exe). Similarly, set the FLEX_EXE
variable to point to your cygwin version of flex.exe. Press configure, then
OK.

 Build the Cubit Code. Open Visual C++ .NET. Under the file menu,

select Open->Project. Select the path BUILD_DIR\cubit.sln Select Build-
>Build Solution, and wait for the project to fully build. This may take some
time. Running the project now will run the GUI and bring up Cubit within
the GUI. You may change any of the Cubit code and rebuild to see the
code changes in action. You may not change the GUI in any way using
this configuration. Those few who actually have a license to QT and are

mailto:cubit-dev@sandia.gov"

working on the GUI will have a separate, custom setup of CMakeSetup
which will create a new Claro GUI when changes are made.

 Setup Visual .NET to run the proper executable In the solution explorer

pane (upper right), right-click on the ALL_BUILD project and select
Properties… On the Property Pages pop-up in the left-hand pane, select
Configuration Properties->Debugging. Under the Action->Command
argument, enter CUBIT_LIB\claro\bin\clarox_d.exe (for debug) or
CUBIT_LIB\claro\bin\clarox.exe. Select OK.

 Run Cubit To run the finished executable, press F5, or select run from the

menu buttons.

 NOTE: if windows cannot run the executable because some .dll or .lib
cannot be found, it is because the PATH variable did not get set correctly.
Try restarting windows, which will fully redefine the PATH variable. If this
does not work, you may need to contact cubit-dev@sandia.gov or your
supervisor to get it defined correctly.

mailto:cubit-dev@sandia.gov"

	Developers Guide for Installing and Building Cubit
	Windows 2000 / Visual .NET
	Version 0.9.4
	Assumptions
	Prerequisites
	Malla Account
	Developer Password to Cubit website
	Software

	Where to Put the Code
	Downloading Cubit Source
	Building Cubit
	Building The Cubit Command Line Version
	Building Cubit GUI Version

